It detects outliers based on prediction bands for the given level of confidence provided.
Arguments
- .data
Data retrieved from
read_data()
for a kinetics test, or the data retrieved fromincremental_normalize()
for a incremental test.- test_type
The test to be analyzed. Either 'incremental' or 'kinetics'.
- vo2_column
The name (quoted) of the column containing the absolute oxygen uptake (VO2) data. Default to
VO2
.- cleaning_level
A numeric scalar between 0 and 1 giving the confidence level for the intervals to be calculated. Default to
0.95
.- cleaning_baseline_fit
For kinetics test only. A vector of the same length as the number in
protocol_n_transitions
, indicating what kind of fit to perform for each baseline. Vector accepts characters either 'linear' or 'exponential'.- protocol_n_transitions
For kinetics test only. Number of transitions performed.
- protocol_baseline_length
For kinetics test only. The length of the baseline (in seconds).
- protocol_transition_length
For kinetics test only. The length of the transition (in seconds).
- method_incremental
The method to be used in detecting outliers from the incremental test. Either 'linear' or 'anomaly'. See
Details
.- verbose
A boolean indicating whether messages should be printed in the console. Default to
TRUE
.- ...
Additional arguments. Currently ignored.
Value
a tibble
Examples
if (FALSE) { # \dontrun{
## get file path from example data
path_example <- system.file("example_cosmed.xlsx", package = "whippr")
## read data
df <- read_data(path = path_example, metabolic_cart = "cosmed")
## detect outliers
data_outliers <- detect_outliers(
.data = df,
test_type = "kinetics",
vo2_column = "VO2",
cleaning_level = 0.95,
cleaning_baseline_fit = c("linear", "exponential", "exponential"),
protocol_n_transitions = 3,
protocol_baseline_length = 360,
protocol_transition_length = 360,
verbose = TRUE
)
## get file path from example data
path_example_ramp <- system.file("ramp_cosmed.xlsx", package = "whippr")
## read data from ramp test
df_ramp <- read_data(path = path_example_ramp, metabolic_cart = "cosmed")
## normalize incremental test data
ramp_normalized <- df_ramp %>%
incremental_normalize(
.data = .,
incremental_type = "ramp",
has_baseline = TRUE,
baseline_length = 240,
work_rate_magic = TRUE,
baseline_intensity = 20,
ramp_increase = 25
)
## detect ramp outliers
data_ramp_outliers <- detect_outliers(
.data = ramp_normalized,
test_type = "incremental",
vo2_column = "VO2",
cleaning_level = 0.95,
method_incremental = "linear",
verbose = TRUE
)
} # }