It performs the calculation of VO2max, HRmax, and maximal RER. Additionally, it detects whether a plateau can be identified from your data.
Usage
perform_max(
.data,
vo2_column = "VO2",
vo2_relative_column = NULL,
heart_rate_column = NULL,
rer_column = NULL,
average_method = c("bin", "rolling"),
average_length = 30,
plot = TRUE,
verbose = TRUE
)
Arguments
- .data
The data retrieved either from
incremental_normalize()
ordetect_outliers()
.- vo2_column
The name (quoted) of the column containing the absolute oxygen uptake (VO2) data. Default to
"VO2"
.- vo2_relative_column
The name (quoted) of the column containing the relative to body weight oxygen uptake (VO2) data. Default to
NULL
.- heart_rate_column
The name (quoted) of the column containing the heart rate (HR) data. Default to
NULL
. IfNULL
, this parameter will not be calculated.- rer_column
The name (quoted) of the column containing the respiratory exchange ratio (RER) data. Default to
NULL
. IfNULL
, this parameter will not be calculated.- average_method
The average method to be used for VO2max calculation. One of
bin
orrolling
.- average_length
The length, in seconds, of the average to be used. For example, if
average_method = bin
, andaverage_length = 30
, it will perform a 30-s bin-average.- plot
A boolean indicating whether to produce a plot with the summary results. Default to
TRUE
.- verbose
A boolean indicating whether messages should be printed in the console. Default to
TRUE
.
Examples
if (FALSE) { # \dontrun{
## get file path from example data
path_example <- system.file("ramp_cosmed.xlsx", package = "whippr")
## read data from ramp test
df <- read_data(path = path_example, metabolic_cart = "cosmed")
## normalize incremental test data
ramp_normalized <- df %>%
incremental_normalize(
.data = .,
incremental_type = "ramp",
has_baseline = TRUE,
baseline_length = 240,
work_rate_magic = TRUE,
baseline_intensity = 20,
ramp_increase = 25
)
## detect outliers
data_ramp_outliers <- detect_outliers(
.data = ramp_normalized,
test_type = "incremental",
vo2_column = "VO2",
cleaning_level = 0.95,
method_incremental = "linear",
verbose = TRUE
)
## analyze VO2max
perform_max(
.data = data_ramp_outliers,
vo2_column = "VO2",
vo2_relative_column = "VO2/Kg",
heart_rate_column = "HR",
rer_column = "R",
average_method = "bin",
average_length = 30,
plot = TRUE,
verbose = FALSE
)
} # }